The Determination Of Water Resource Classes, Reserve And Resource Quality Objectives For Secondary Catchments (A5-A9) Within The Limpopo WMA and Secondary Catchment B9 in the Olifants WMA

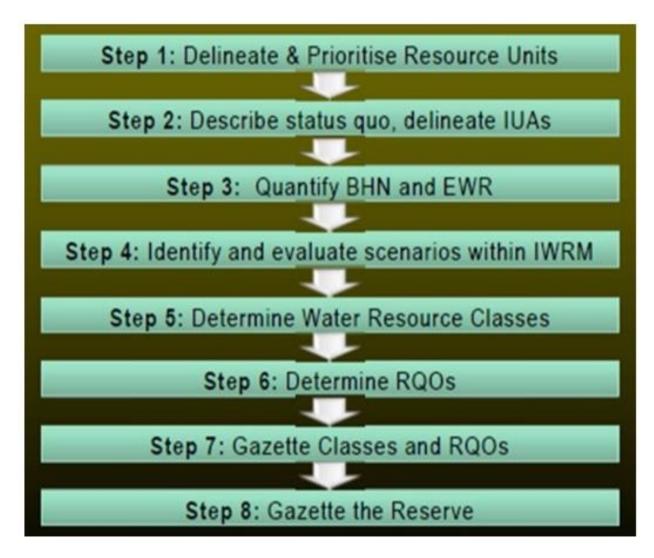
Project Steering Committee Meeting No. 2

Ecological Water Requirements for rivers

Presented by: Karl Reinecke and Toriso Tlou Date: 14 March 2024

WATER IS LIFE - SANITATION IS DIGNITY

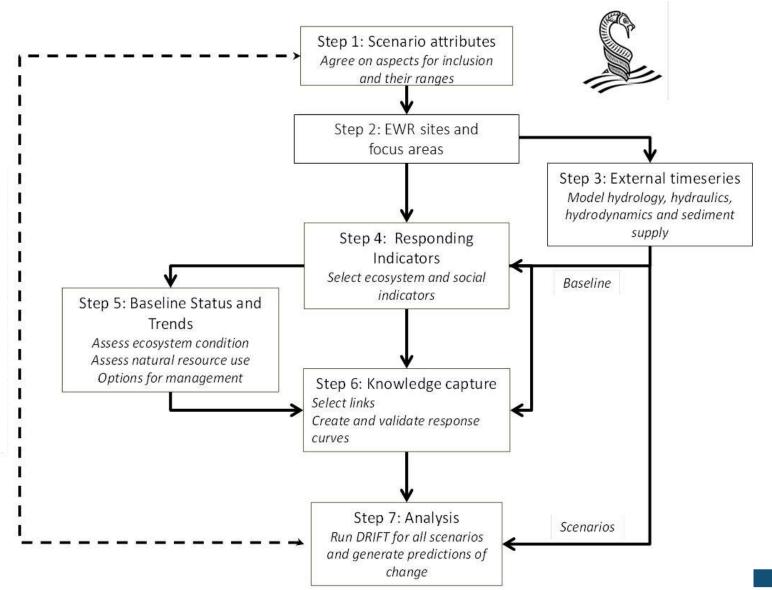
water & sanitation


Department: Water and Sanitation **REPUBLIC OF SOUTH AFRICA**

Contents

- Project overview EWRs, WRCS, RQOs
- Objective, DRIFT software and process
- Overview of DRIFT-Limpopo
- PES (2022) conditions and RECs
- Scenarios assessed
 - Example of DRIFT hydrological indicators
- Main outcomes for rivers
 - Predicted changes in Ecological Status
 - Predicted changes per discipline
 - Predicted changes in social use
- EWR summary table

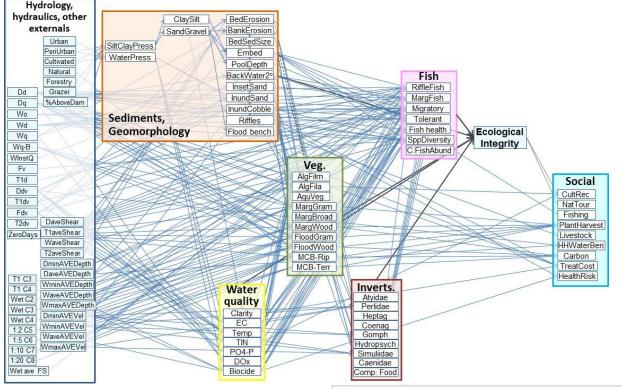
EWR, WRCS, RQO PROCESS


EWRs, WRCS, RQOs

- EWRs are '...the quantity, quality and timing of flow to support ecosystem function...'
- EcoCategorisation is step 1, to describe the status of groundwater, rivers and wetlands
- EWRs go into the WRCS
 - stakeholders consider the tradeoffs between water for development and that for the environment
- One EWR is chosen in the WRCS
- RQOs are numerical and descriptive statements of the biological, chemical and physical attributes of the river at the defined level of protection

River EWRs

- Objective of the DRIFT-EWR process:
 - Select ecosystem indicators
 - Assess ecological status and trends of each indicator in the scenarios and predict change relative to PES (2022)
 - Predict the overall ecological status under each scenario
- Outcomes in 3 River Assessment reports:
 - (Volume 1) Eco-Categorisation Report
 - (Volume 2) Ecological Water Requirements Data Collection and Analysis Report
 - (Volume 3) Ecological Water Requirements Assessment Report


The 7-step DRIFT process

6

V

DRIFT-Limpopo, response curves

Desc	m3/s	Y1	Y2			300	5	10
Min	0.000	-1.500				250	-	o m MMA AM, MALIA MANA NA AN 40
Min Base	0.796	-0.800				200	ase	-10 W VIW WWW WWW 20
	3.547	-0.400				150	% B	20 MATURA MANY WANKAWANGAM
Median	6.298	0.000				100		1940 1960 1980 2000 2020
	39.039	1.000		r				The higher the maximum flows in the river, the greater the extent of inundation of the backwaters. Lower peak
Max Base	71.780	2.000				50		flows will limit the extent of seasonal inundation. Flood
Max	82.547	3.000		0	50	0		flows also scour the backwaters and secondary

m3/s

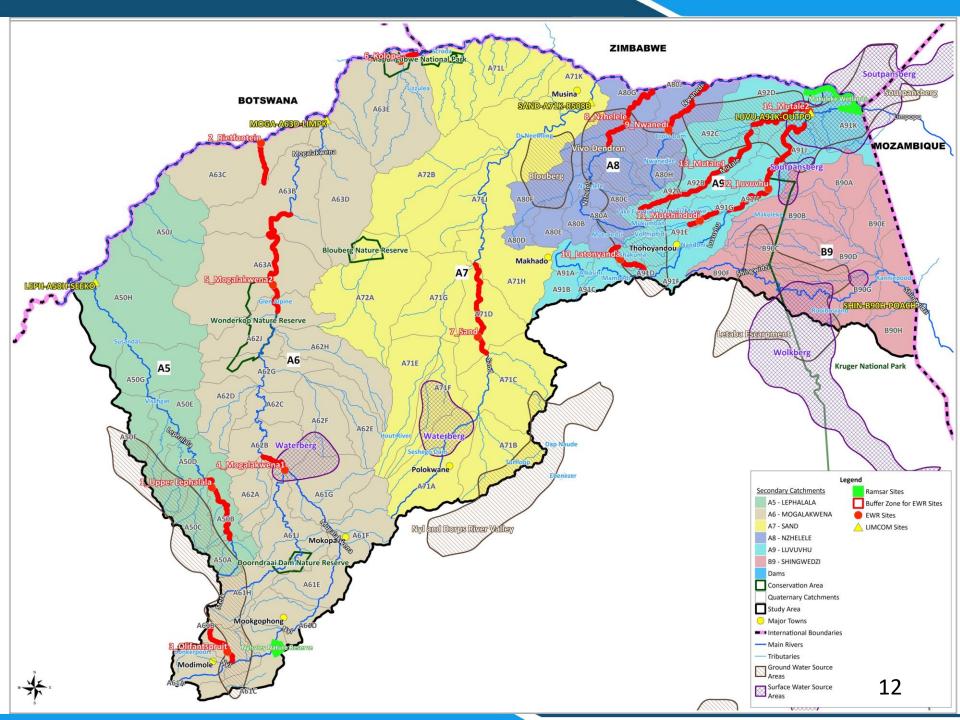
~

Hydrologic and hydraulic drivers

Di	scipline	Indicator	Units	Discipline	Indicator	Units
		Mean annual runoff	m ³ /s	ľ	Average shear stress	N/m ²
	Annual	Zero flow days per year			Minimum (of average) depth	
	Annual	Days continuous depth > 5 cm	days		Maximum (of average) depth	m
		Days continuous depth > 10 cm	<u> </u>		Minimum (of average) velocity	
		Onset	calendar week		Average (of maximum) velocity	m/s
		Duration	days	River hydraulics (for	Maximum (of average) velocity	
	Dry Season	Minimum 5-day discharge	m ³ /s	all seasons above, at	Minimum 5-day wetted perimeter	
		Average daily volume	3106	one or two selected	Maximum 5-day wetted perimeter	m
ogy	Transition Season 1	Average daily volume	m ³ x 10 ⁶	cross-section at each	Average fast very shallow flow	
Hydrology		Duration	days	EWR site)	Average fast shallow flow	
Нус		Onset	calendar week		Average fast deep flow	
		Duration	days		Average slow deep flow	% cross-setion
		Maximum 5-day discharge			Average slow very shallow flow	
	Flood/Wet Season	Maximum 5-day instantaneous discharge	m ³ /s		Average slow shallow flow	
		Maximum 5-day baseflow discharge	<u> </u> '		Average slow deep flow	
		Average daily volume		P		
		Volume	m ³ x 10 ⁶			
	Transition Season 2	Average daily volume	<u> </u>			
		Duration	days			

Eco-social responders

-	E٧	VR	sit	te										
Indicators	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Discipline: Water quality														
Water clarity														
Electrical conductivity														
Water temperature														
Total inorganic nitrogen (TIN)														
Orthophosphate (PO ₄ -P)														
Dissolved oxygen														
Biocides														
Discipline: Geomorphology														
Clay silt FPOM supply														
Sand gravel supply														
Bed erosion														
Bank erosion														
Bed sediment size														
Embeddedness														
Pool depth														
Backwaters and secdonary channels														
Inset bench and sand bars														
Inundated sandy habitat														
Inundated cobble habitat														
Riffles														
Flood benches														


Eco-social responders

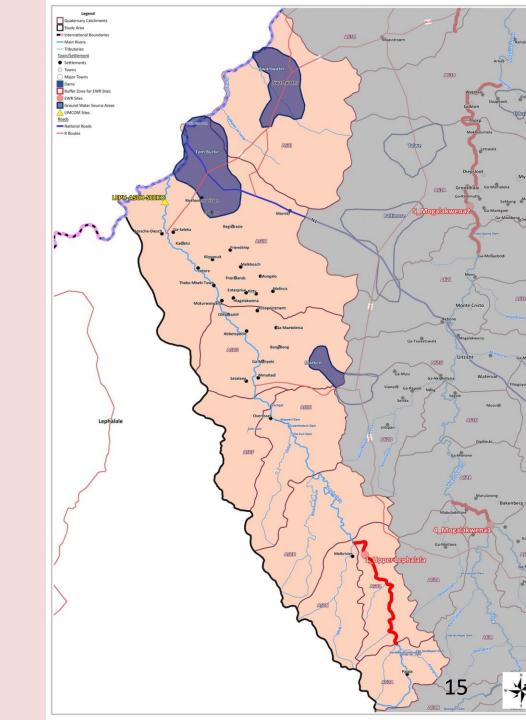
	EWR site		EWR site									
Indicators	1 2 3 4 5 6 7 8 9 10 11 12 13 14	Indicators	1 2	3	4 5	56	78	9	10 1	1 12	2 13	14
Discipline: Vegetation		Discipline: Fish										
Algal biofilms		Rocky riffle fish						\Box				
Filamentous algae		Quiet vegetated water fish			Ι							
Aquatic vegetation		Migratory fish			Γ							
Marginal zone graminoids		Tolerant species		I	Ι			\Box				
Marginal zone broadleaf plants		Fish health			Ι			Π				
Marginal zone woody vegetation		Species diversity		I	Γ			Π				
Flood bench graminoids		Composite: fish abundance			Ι							
Flood bench woody vegetation		Discipline: Social										
Macrochannel bank riparian trees		Recreation, cultural value			Γ			\Box				
Terrestrial wood plants		Nature tourism value		T	Γ			\Box				
Discipline: Aquatic macroinvertebrate	'S	Fisheries value			Ι			\Box				
Atyidae (shrimps)		Plant resource value		Ι	I			\Box				
Perlidae (stone files)		Household water benefits			Ι			Π				
Heptageniidae (flat-head mayflies)		Subsistence livestock grazing		Ι	T	\Box		\Box	\Box			
Coenograionidae (sprites and blues)		Carbon retention value			Ι							
Gomphidae (club-tailed dragonflies)		Water treatment costs			Γ							
Hydropsychidae (caddisflies)		Health risk		I	Ι			\Box				
Simulidae (blackflies)		Discipline: Pressures										
Caenidae (cainflies)		Pressures affecting sediment supply		I				Π				
Composit: Invertebrate foor for fish		Pressures affecting sediments			Ι							
		Pressures affecting water quality		I	T							

WATER IS LIFE - SANITATION IS DIGNITY

PES (2022), EIS, RECs

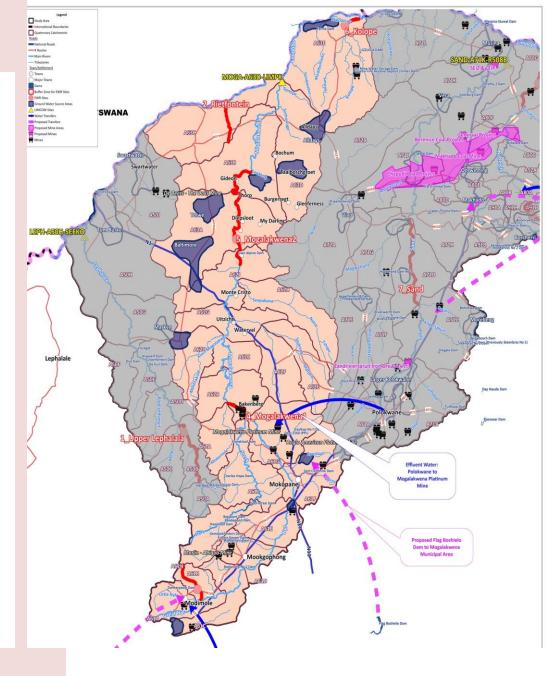
	EWR Site	Quaternary Catchment	PES	EIS	REC	Improved management to achieve REC?
	1_Lephalala	A50B	С	Moderate	B/C	Re-stock with indigenous fish and clear exotic plants.
	LEPH-A50H-SEEKO	A50H	С		С	
	2_Rietfontein	A63C	B/C	Moderate	B/C	
	3_Olifantspruit	A61B	С	Moderate	С	
	4_Mogalakwena1	A62B	С	Moderate	С	
	5_Mogalakwena2	A63A	С	Moderate	С	
	MOGA-A63D-LIMPK	A63D	С		С	No non-flow related management specified.
	6_Kolope	A63E	С	Moderate	С	
	7_Sand	A71D	С	Moderate	С	
	SAND-A71K-R508B	A71K	С		С	
	8_Nzhelele	A80G	С	Moderate	С	
	9_Nwanedi	A80J	С	Moderate	С	
	10_Latonyanda	A91D	С	Moderate	B/C	Manage local landuse practices (subsistence agriculture, livestock watering, cattle grazing) to reduce erosion.
	11_Mutshindudi	A91G	С	Moderate	С	
	12_Luvuvhu	A91H	С	Moderate	С	No non-flow related management specified.
	LUVU-A91K-OUTPO	A91K	С		С	
	13_Mutale1	A92B	С	Moderate	B/C	Manage local landuse practices to reduce erosion, and clear exotic plants.
	14_Mutale2	A92D	С	Moderate	B/C	Manage local landuse practices to reduce erosion, reduce trampling of riparian plants by humans and livestock.
WATER	SHIN-B90H-POACH	B90H	B/C		B/C	No non-flow related management specified. 11

Human pressures

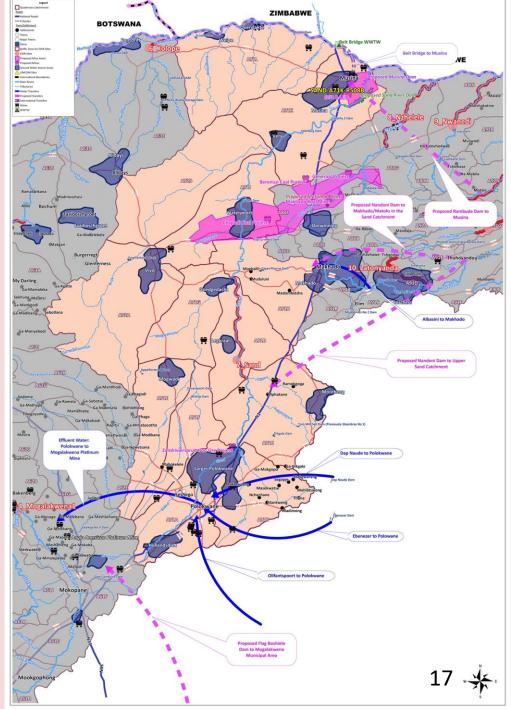

- WQ
 - Irrigation and WWTW return flows, mining pollutants, turbidity
- Geomorphology
 - Grazing, farm roads, clearing natural vegetation, sand mining, agriculture and in-channel sediments; sediment trapping in dams
- Vegetation
 - Exotic plant species, flow regulation, afforestation
- Invertebrates
 - Nutrients from urban and agricultural runoff, livestock watering, clearing of marginal vegetation
- Fish
 - Migration barriers (weirs, dams), sedimentation (spawning gravels and riffles), turbidity

Current and Future Water Resource Development in the catchments

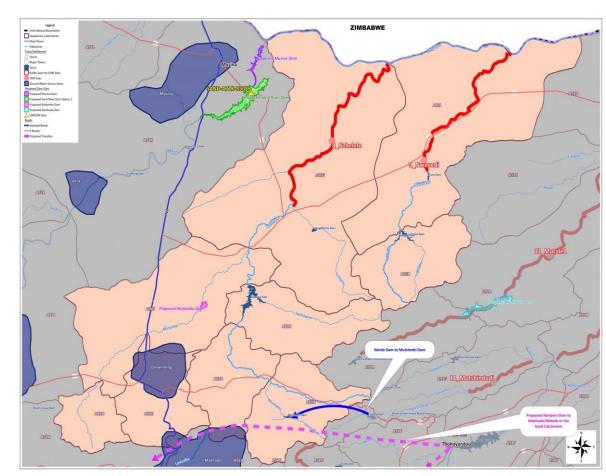
- There are six major catchments where varying economic growth will have an impact on the resources of these catchments;
- Six catchments include
 - Lephalala River catchment
 - o Mogalakwena River catchment
 - Sand River catchment
 - Nzhelele River catchment
 - o Luvuvhu River catchment
 - Shingwedzi River catchment

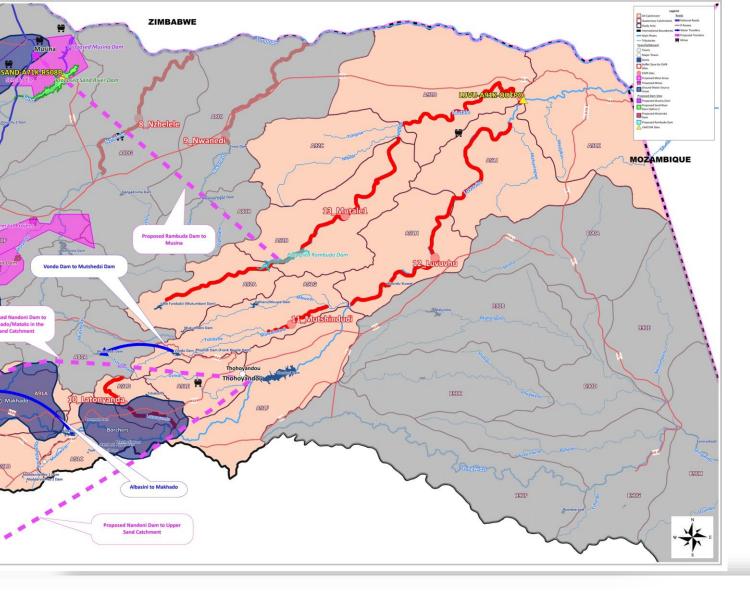

A5 - Lephalala catchment

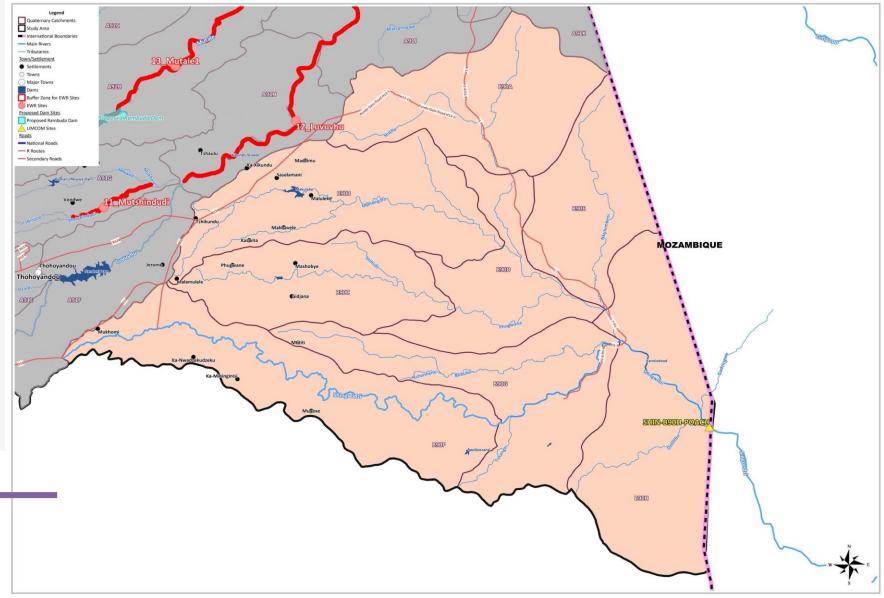
- Limited local water resources
- Main activity is irrigation agriculture which is taking place in the upper reaches
- Large number of farm dams
- Lower catchment irrigation makes use of alluvial aquifers
- Domestic water use groundwater & run-of-river abstraction
- No potential for additional resource development


A6 - Mogalakwena catchment

- Significant economic activities in catchment ranging from mining activities & irrigation agriculture
- Two major dams not sufficient to meet current & growing demands
 - o Doorndraai & Glen Alpine
- Transfers from neighbouring catchment namely
 - Flag Boshielo Dam
 - o Klipvoor Dam


A7 - Sand catchment


- Driest catchment in Limpopo WMA with very limited surface water resources
- Groundwater reserves fully utilised
- Large water requirements irrigation being the largest user
- Domestic water requirements supplied mostly from transfers from other catchments
- Major economic developments anticipated
 - MSEZ near Musina potential source proposed Sand River Dam and/or Musina Dam – pumped storage systems
 - Makhado transfers from Nandoni Dam
- Return Flows
 - Used downstream for tomato irrigation around Mooketsi
 - Also transferred to Mogalakwena for use by platinum mines


A8 – Nzhelele and Nwanedi catchment

- Catchment is dominated by irrigation agriculture
- Main source of supply is Nzhelele Dam
 - Future development Coal mining traversing into the Sand catchment
 - Potential source is proposed Mutamba Dam
 - Savings from irrigation canal losses

- A9 Luvuvhu : catchment
- Major developments are urban & rural communities
 - Irrigation agriculture is the main economic activity
 - Catchment transfers surface water to neighbouring catchments 19

B9 – Shingwedzi catchment

- Ecotourism a core industry of the catchment
- No major dams limited resources
- No potential surface water developments 20 envisaged for the catchment

Water resource factors – Future1

EWR Site	Increased return flows	New dam storage/increasing dam storage	Incoming inter- basin transfers	Transfers of return flows out of the catchment	Increased water use
1_Lephalala					Х
4_Mogalakwena1	Х				
5_Mogalakwena2	Х				
7_Sand	Х		Х		Х
8_Nzhelele		Х			Х
9_Nwanedi					Х
11_Mutshindudi		Х			Х
12_Luvuvhu	Х			Х	Х
13_Mutale1		Х			Х
14_Mutale2		Х			

Scenarios

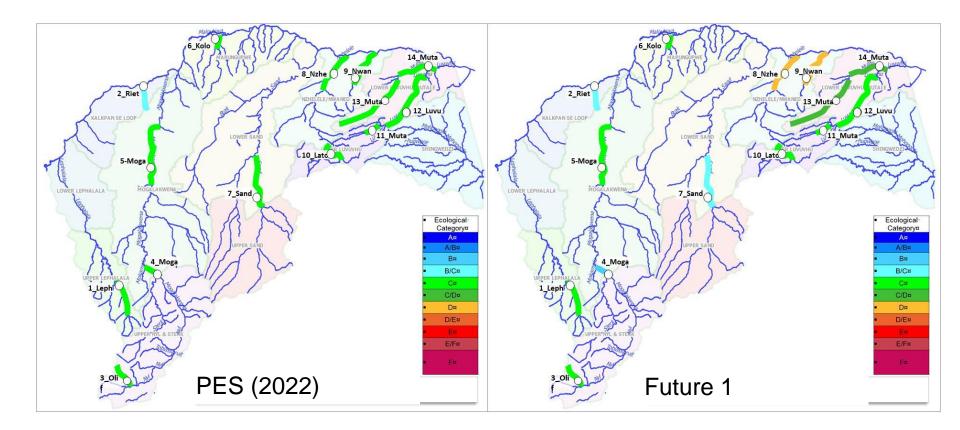
- PES (2022), the climatic period of 1925-2021 and waterresource developments, population, land use, etc. at 2022 levels.
- Naturalised, the climatic period of 1925-2021 and waterresource developments, population, land use, etc. at *c.* 1900 levels.
- Future1 is PES (2022) and water-resource developments at 2050 levels.
- Future2 is Future1 with a dry future climate.

DRIFT hydrological indicators

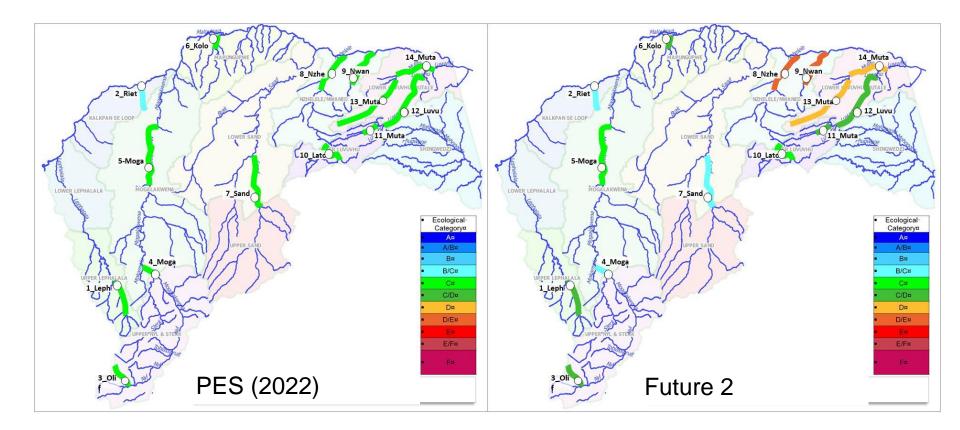
4_Mogalakwena1	Baseline	Naturalised	Future1	Future2
Mean annual runoff	0.3	0.8	0.5	0.2
Dry onset	18.0	14.0	16.0	13.0
Dry duration	244.0	240.5	252.0	281.0
Dry Min 5d Q	0.000	0.011	0.006	0.002
Wet onset	15.0	9.0	10.0	10.0
Wet duration	70.5	81.0	57.0	7.0
Wet Max 5d Q	2.0	8.1	3.6	1.3
Wet max inst 5d Q	2.0	11.7	6.1	1.8
Wet max 5d Q-Baseflow	0.7	1.5	1.1	0.5
Wet season volume	0.8	11.0	4.4	0.3
Dry ave daily vol	0.012	0.045	0.031	0.018
T1 ave daily vol	0.044	0.046	0.047	0.029
Wet ave daily vol	0.111	0.200	0.124	0.069
T2 ave daily vol	0.043	0.057	0.058	0.048
T1 duration	31.0	22.0	15.0	29.5
T2 duration	1.0	1.0	1.0	1.0
Zero days per year	134.2	7.6	8.9	10.0
(max)Continuous days>=5 cm deep	161.5	279.5	258.5	241.5
(max)Continuous days>=10 cm deep	119.5	206.5	188.0	183.0

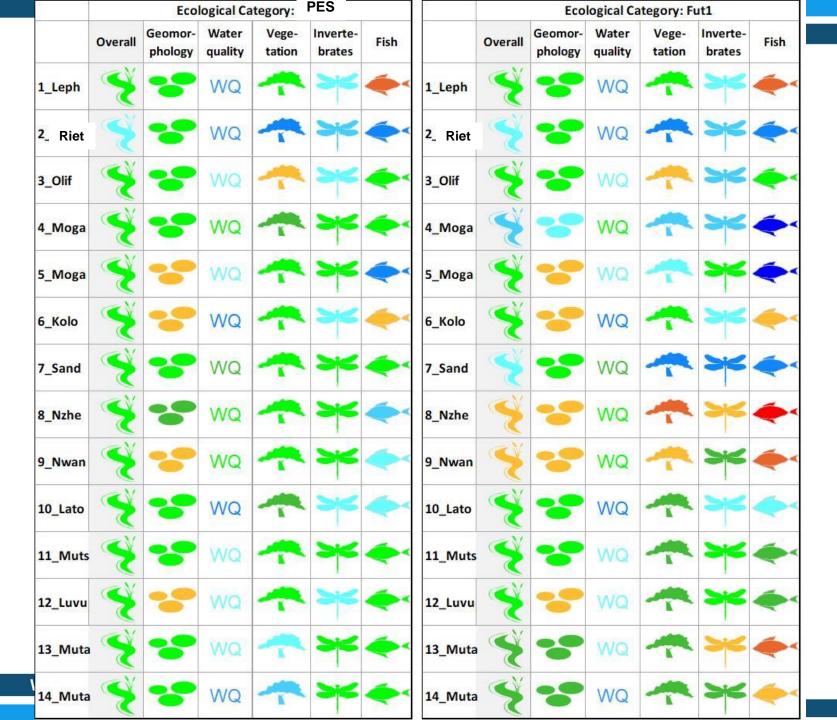
Icons and colour coding - ecological

Category	Description	Ecosystem	Geomorph.	Riparian vegetation	Inverte- brates	Fish
A		Ž		~	><	~
A/B	Unmodified, natural	Ž		~	><	
В	Longolymotics			*	214	
B/C	Largely natural	N			X	•
С	Madamataly madified	Ň			×	*
C/D	Moderately modified	X		-)	•
D	Largely modified	Ž			X	•
D/E	Largely modified	X			X	•
E		V	•	-	×	.
E/F	Completely modified				><	•
F						.


Icons and colour coding - social

Recreation, culture value	lcon
Overall social well-being	
Nature tourism value	$\overline{\bullet}$
Fisheries value	
Plant resource value	
Domestic and livestock watering	TRA
Carbon retention value	С


Colour	Change relative to baseline
	Marked increase/improvement >+40%)
	Increase/improvement (+20 to +40%)
	Slight increase/improvement (+5 to +20%)
	Little or no change (-5 to +5%)
	Slight decrease/deterioration (-5 to -20%)
	Decrease/deterioration (-20 to -40%)
	Marked decrease/deterioration (<-40%) (a greater than 40% decrease)


WATER IS LIFE - SANITATION IS DIGNITY

Overall Ecological Status

Overall Ecological Status

			% Chane	ge: Base					% Change: Fut1							
	Social well- being	Fisheries value	Plant resource value	Domestic, livestock use	Nature tourism value	Carbon retention value		Social well being	Fisheries value	Plant resource value	Domestic, livestock use	Nature tourism value	Carbon retention value			
1_Leph	îîî	ΰķ				С	1_Leph	111	Ŵ		n h		С			
2_ Riet	ñññ					С	2_ Ri	iet				$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	С			
3_Ollf	ĥĥ	Ŵ			•	С	3_Ollf	ĥĥ	Ŵ		n	•	С			
4_Moga	îîî	Ŵ			•	С	4_Moga		Ŵ			•	С			
5_Moga	îîî	ΰķ	ij		•	С	5_Moga	-	Ŵ	1	17A		С			
6_Kolo	îîî					С	6_Kolo	î					С			
7_Sand	îîî	ΰķ				С	7_Sand	î	Ŵ		n	•	С			
8_Nzhe	îîî	ΰķ	١Ì			С	8_Nzhe	î	•	1		•	С			
9_Nwan	îîî	ΰķ	1)		•	С	9_Nwai	n	•	1	~		С			
10_Lato	îîî	Ŵ	ij			С	10_Lato		Ŵ	Ň	n h		С			
11_Muts	îîî	Ŵ	Ņ		•	С	11_Mu1	ts M	Ŵ	ij			С			
12_Luvu	îîî	ΰķ	1)		•	С	12_Luvi	-	Ŵ	Ņ	n		С			
13_Muta	îîî	ΰķ	Ņ	n h	•	С	13_Mut		•	1	~	•	С			
14_Muta	îîî	Ň	Ŋ		•	С	14_Mut			1	~		С			

			% Chan		% Change: Fut2													
	Social well- being	Fisheries value	Plant resource value	Domestic, livestock use	Nature tourism value	Carbon retention value												
1_Leph	îîî	Ň			\bullet	С												
2_ Riet	îñî					С												
3_Ollf	îñ	Ŵ			•	С												
4_Moga	îîî	Ŵ		A		С												
5_Moga	îñ	Ŵγ	ţ.	n		С												
6_Kolo	îñ					С												
7_Sand	îñ	Ŵ			•	С												
8_Nzhe	î	Ŵ	1	m	•	С												
9_Nwan	îîî	İ	1			С												
10_Lato	îñ	Ň	ţ.			С												
11_Muts	îñ	Ń	ij			С												
12_Luvu	îñ	Ŵ	1		•	С												
13_Muta	îîî	Ŵ	1		•	С												
14_Muta	îîî	Ŵ	1		•	С												

WATER IS LIFE - SANITATION IS DIGNITY

Ecological Water Requirements

Future development:	EWR site	EIS	REC	PES (2022)	Future1	Synthetic Scenario		Additional mitigation recommended?	
Yes / No				Outco	me of scei			Yes / No	
Yes	1_Lephala	Moderate	B/C	С	С			Yes	
No	2_Rietfontein	Moderate	B/C	B/C	B/C				
No	3_Olifantspruit	Moderate	С	С	С				
Yes	4_Mogalakwena1	Moderate	С	С	В				
Yes	5_Mogalakwena2	Moderate	С	С	С			No	
No	6_Kolope	Moderate	С	С	С				
Yes	7_Sand	Moderate	С	С	B/C				
Yes	8_Nzhelele	Moderate	С	С	D	SS1	C/D		
Yes	9_Nwanedi	Moderate	С	С	D	SS1	C/D		
No	10_Latonyanda	Moderate	B/C	С	С			Yes	
Yes	11_Mutshindudi	Moderate	С	С	С			No	
Yes	12_Luvuvhu	Moderate	С	С	С			INU	
Yes	13_Mutale1	Moderate	B/C	С	C/D	SS2	С	Yes	
Yes	14_Mutale2	Moderate	B/C	С	C/D	SS1	С	Tes	

EWRs – Shingwedzi River

Annual Flows (Mill. cu. m or index values):

MAR	=	86.618
S.Dev.	=	200.484
CV	=	2.315
Q75	=	0.32
Q75/MMF	=	0.044
BFI Index	=	0.214
CV(JJA+JFM) Index	=	4.722

REC

- Total E-Flows Maint. Low flow Drought Low flow Maint. High flow
- = 27.639 (31.91 %MAR) = 13.487 (15.57 %MAR)

= B/C

- = 0.806 (0.93 %MAR)
- = 14.152 (16.34 %MAR)

Monthly Distributions (cu.m./s) Distribution Type: Lowveld

Month	Natural flows			Modified flows (E-Flows)				
	Mean	SD	CV	Low flows		High flows	Total flows	
				Maint.	Drought	Maint.	Maint.	
Oct	0.32	0.404	0.472	0.229	0.022	0	0.229	
Nov	0.721	1.27	0.68	0.255	0.027	0	0.255	
Dec	2.035	5.284	0.969	0.336	0.026	0	0.336	
Jan	8.595	27.053	1.175	0.797	0.03	1.51	2.307	
Feb	11.65	43.043	1.527	1.079	0.029	2.507	3.586	
Mar	7.07	28.174	1.488	0.779	0.03	1.51	2.289	
Apr	1.441	5.594	1.498	0.412	0.031	0	0.412	
May	0.375	0.409	0.408	0.274	0.022	0	0.274	
Jun	0.366	0.407	0.429	0.273	0.023	0	0.273	
Jul	0.343	0.381	0.415	0.257	0.022	0	0.257	
Aug	0.325	0.364	0.417	0.246	0.022	0	0.246	
Sep	0.318	0.355	0.432	0.241	0.023	0	0.241	

WATER IS LIFE - SANITATION IS DIGNITY

Thank you

Project Team

DRIFT project team – Karl Reinecke, Alison Joubert, Cate Brown

EWR team – Gerald Howard, Andrew Birkhead, Nico Rossouw, Bennie van der Waal, James Mackenzie, Colleen Todd, Mathew Ross, Gwyn Letley, Jane Turpie

Water Resource Development Team – Toriso Tlou, Gerald Howard, Adhishri Singh